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Monte Carlo simulations for a Lotka-type model with reactant surface diffusion and interactions
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The standard Lotka-type model, which was introduced for the first time by Maiet al. @J. Phys. A30, 4171
~1997!# for a simplified description of autocatalytic surface reactions, is generalized here for a case of mobile
and energetically interacting reactants. The mathematical formalism is proposed for determining the depen-
dence of transition rates on the interaction energy~and temperature! for the general mathematical model, and
the Lotka-type model, in particular. By means of Monte Carlo computer simulations, we have studied the
impact of diffusion~with and without energetic interactions between reactants! on oscillatory properties of the
A1B→2B reaction. The diffusion leads to a desynchronization of oscillations and a subsequent decrease of
oscillation amplitude. The energetic interaction between reactants has a dual effect depending on the type of
mobile reactants. In the limiting case of mobile reactantsB the repulsion results in a decrease of amplitudes.
However, these amplitudes increase if reactantsA are mobile and repulse each other. A simplified interpreta-
tion of the obtained results is given.

DOI: 10.1103/PhysRevE.63.051104 PACS number~s!: 82.20.Wt, 68.03.Fg, 82.65.1r
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I. INTRODUCTION

In the last decade along with studies of dissipative str
tures in homogeneous catalytic reactions of the Belous
Zhabotinskii type, considerable attention was attracted to
heterogeneous catalytic reactions. They reveal a whole s
trum of synergetic effects, e.g., rate oscillations, concen
tion waves, spirals, and chaos@1#. The heterogeneous sys
tems are simpler than the homogeneous ones. Therefore
can use for their study a number of powerful experimen
and theoretical methods, which allows one to determine
origin of spatiotemporal structures.

In particular, the oscillatory kinetics was observed in h
erogeneous catalysis on many metal surfaces as well a
oxide catalysts@1#. The mechanism of oscillations is differ
ent for various catalysts@2#. The more so, for the same cat
lyst the origin of oscillations is different in the high and lo
gas pressure limits. However, independently on the type
catalyst, the global synchronization of oscillations is o
served@1#. This fact implies the existence of very univers
rules in the behavior of oscillatory systems, which exist
dependently on both type of catalyst and mechanism o
particular catalytic reaction.

One of the theoretical methods used to attack the prob
of catalysis is a Monte Carlo~MC! computer simulation~see
Refs.@3,4#, and references therein!. Its role considerably in-
creased during the last years due to increase of comp
tional facilities. The idea of the MC method is to define
mathematical model, which accounts for basic experimen
tally detected reaction steps. The reactants are assumed
classical particles~usually denoted asA, B, etc.!, which can
occupy sites on a discrete lattice. This allows easily to
scribe adsorption, desorption, diffusion, and reaction of re
tants as one- or two-site processes with the correspon
rates. Both reconstructed and non-reconstructed surface
be modeled by assigning different sticking coefficients
reactants to lattice sites. Some models consist of more
ten-step reactions. A detailed mathematical model of
1063-651X/2001/63~5!/051104~10!/$20.00 63 0511
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complicates an analysis of simulation results and thus p
vents from the understanding of basic driving mechanis
e.g., the origin of synchronization of oscillations.

To study the very basic properties of catalytic system
mathematical models, which are less detailed, are of part
lar importance. One of such models is the Lotka-type mo
introduced for a simplified description of the autocataly
surface reactions by Maiet al. @5# and further employed in
Refs. @6–8#. This is a single-parameter model, with tw
kinds of reactants. It was shown that reactant concentrat
exhibit here stable oscillations independently of lattice si
Self-sustained oscillations of the model allows one to ap
standard methods used for a treatment of oscillatory syste
For example, the resonance properties of the Lotka-t
model were analyzed recently@9# by periodically varying in
time the control parameter. Another model which, howev
show unstable oscillations is the Lotka-Volterra model. T
effects of the spatial constraints on the dynamics of t
model was studied recently@10#.

Diffusion of reactants in real catalytic surface reactions
a very quick and important process, which can lead to
formation of aggregates, clusters and spatial structures.
is why of particular interest are those mathematical mod
which take into account diffusion of reactants. The studies
chemical reaction kinetics with mobile reactants have a lo
history @4#. The diffusion is implemented usually as rando
walks on the lattice with and without energetic interacti
between reactants. For example, the coagulation eff
as diffusion-controlled processes were studied forA
1B→ inert reactions by Silverberg and Ben-Shaul@11#. The
Ziff-Gulary-Barshad~ZGB! model, which mimics the cata
lytic CO11/2O2→CO2 reaction, had been also extended f
diffusion of reactants on a regular surface@12–14#, diffusion
on a reconstructing surface@15#, and for diffusion and ener-
getic interaction between reactants on a regular surface@16#.
Chemical reactions with mobile and energetically interact
reactants on a reconstructing catalytic surface were stu
by Zhdanov~see Ref.@17#, and references therein!. However,
©2001 The American Physical Society04-1
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G. ZVEJNIEKS AND V. N. KUZOVKOV PHYSICAL REVIEW E63 051104
almost in all papers, which deal with reactant energetic
teractions, the kinetic model is not defined uniquely. For
same system different authors use transition rates of elem
tary processes~e.g., adsorption, desorption, etc.!, which
could have or have not energetic~and temperature! depen-
dence. It makes a comparison of the results practically
possible. The more so, the simulation algorithms are not
ways adequate to the problem. For example, in simulati
of non-equilibrium processes in the kinetic model t
method of Metropolis was used@17#. However, this method
is defined only for equilibrium systems, where the kine
aspects of the model are neglected.

In the present paper, we extend the standard Lotka-t
model @5# via introduction of reactant diffusion. This ste
automatically leads to energetically dependent reaction ra
In particular, we are interested in determining and und
standing the impact of mobile and interacting reactants
the temporal structures in the Lotka-type model.

The paper is organized in the following way. In Sec. II w
introduce the standard Lotka-type model and generalize i
an incorporation of diffusion and energetic interaction of
actants. The algorithm and details of simulations is descri
in Sec. III. The simulation results and discussion are p
sented in Sec. IV. Lastly, conclusions are given in Sec.
Taking into account the above-mentioned problems aris
from incorporation of diffusion into the mathematical mod
we give in Appendix A a detailed description of this proce
dure. The suggestedstandard modeldefines uniquely transi
tion rates dependence on the interaction energy for all
ementary process rates. The formalism can be applie
every kinetic lattice model. The relation between the ‘‘p
algorithm,’’ which is used in our MC simulations, and th
master equation is given in Appendix B.

II. GENERALIZED LOTKA-TYPE MODEL

The Lotka-type model consists of two kinds of reacta
labeled hereafter asA(B), which are situated on a squa
discrete lattice. First, let us remind the definition of the st
dard Lotka-type model. The following rules are stated
reactants on the lattice: reactantA can be adsorbed from
gas phase in an empty siteO with the adsorption ratez,
Eq. ~1!:

A~gas!1O→
z

A~ads!, ~1!

A~ads!1B~ads!→2B~ads!, ~2!

B~ads! →
12z

B~gas!1O. ~3!

If reactantA is located in the nearest neighbor~NN! position
to an existing reactantB, an autocatalytic reproduction rea
tion takes place instantly, Eq.~2!. It is assumed that this ste
takes no time. This leads to the state where reactantsA andB
never occupy NN positions. ReactantB can be desorbed with
the rate (12z), Eq. ~3!. It is sufficient to have these reac
tions for obtaining the temporal behavior—oscillations of
actant concentrations@5#. Secondly, the standard model ca
05110
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be easily generalized by an incorporation of reactant dif
sion. ReactantA ~B! can jump to its NN site if it is empty:

A~ads!1O→
yA

O1A~ads!, ~4!

B~ads!1O→
yB

O1B~ads!, ~5!

with the jump rateyJ , whereJ5A,B. @The diffusion coef-
ficient DJ is related to a jump rate by the following equatio
DJ5(1/z)a2yJ , wherez is a site coordination number anda
is a lattice constant.# The jump rate for isolated reactant d
pends only on activation energyeact,J ~in the units of kT!:
yJ5yJ

05y0,J exp(2eact,J), where y0,J is a pre-exponentia
factor andyJ

0 denotes the jump rate of noninteracting rea
tants. Lastly, we take into account an energetic interac
between reactants. To do it we introduce the energetic c
acteristics of the reactant configuration. If the two reacta
are in the NN positions, their interaction energy equals
eAA , eBB , andeAB ~in the units of kT! depending on the type
of reactants,AA, BB, AB, respectively. Since we are inte
ested in determining the role of energetic interaction on te
poral structures it is assumed that temperatureT is constant,
which allows us to consider energy termseJJ8 andeact,J in-
dependently. The jump rate is weighted according to the
actant local configuration. The interaction energy at initialea
and finaleb reactant state is calculated as

ea,b5eAAnA1eBBnB1eABnAB , ~6!

where nA (nB) is the number of nearest reactantsA (B)
around the considered reactant andnAB is the number ofAB
pairs, respectively. Finally, the jump rate for interacting r
actants reads

yJ52yJ
0 1

11exp~eb2ea!
, ~7!

see Appendix A for more details. If energetic interacti
between reactants is neglected, thenea5eb50 and we ob-
tain from Eq.~7! yJ5yJ

0 .

III. SIMULATION ALGORITHM

Unlike the standard MC, in our computer simulations w
considerpairs of NN lattice sites. That makes a simulatio
procedure more transparent and its extension to two-site
cesses, such as diffusion, is straightforward. Relation
tween our simulation algorithm and a corresponding ma
equation is given in Appendix B. The considered algorith
has been used earlier~see, e.g., Refs.@18,19#, and references
therein!. We want to stress here that on the basis of t
algorithm it was proposed therein to use a very quick meth
of cellular automaton~CA! instead of usual MC. These
methods coincide if the two conditions are fulfilled: The d
fusion of reactants is very quick, and all transition rates
finite. Since these conditions are not fulfilled in the Lotk
type model, we have to use a standard MC procedure.
simulation loop consists of the following steps.
4-2
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MONTE CARLO SIMULATIONS FOR A LOTKA-TYPE . . . PHYSICAL REVIEW E 63 051104
~1! The time update is determined as follows. All possib
initial distributions i of reactantsA (B) in the two lattice
sites are considered. For each such a configuration all
sible independent reactions Eqs.~1!–~5! are summed, which
allows one to determine the transition ratepi of changing the
initial configuration:

B1B2 : desorption ofB11desorption ofB2 , ~8!

p152~12z!,

B1O2 : desorption ofB11adsorption inO21 jump of B1 ,
~9!

p25112yB
0 ,

A1O2 : adsorption inO21 jump of A1 , ~10!

p35z12yA
0 ,

O1O2 : adsorption inO11adsorption inO2 , ~11!

p452z,

A1A2 : configuration does not change, ~12!

p550,

where lower indices atX1Y2 denote the first and the secon
site of a pair. The step for an optimal time update is cho
to be proportional to an inverse of the maximal transiti
ratedt51/max(pi). Time update cannot be chosen larger b
cause the probabilitiespi are normalized to unity, i.e.,pidt
,1 for all i. Time update can be chosen smaller, but then
computer code would not be very effective due to ma
empty loops.

~2! The simulation time is updated,t→t12dt/L2, where
L is the lattice size.

~3! A random number~RN! is generated, in order to
choose between horizontal or vertical orientations for a p

~4! Two RNs are generated to chose the coordinates of
pair.

~5! The state of chosen sites is determined. Depending
it, see Eqs.~8!–~12!, one of independent reactions can
chosen randomly according to the standard MC simula
algorithm. For example, in the case of a pairA1O2 @Eq.
~10!#: First, a RN is generated. Then reactantA adsorption
step inO2 is started if RN,zdt, else ifzdt<RN,p3dt the
jump step ofA1 is started. Nothing happens if RN>p3dt.

~a! In a reactantA adsorption step, reactantA is created in
the corresponding empty site. Then the system is checke
all AB pairs, which could be in the NN lattice sites. If such
pair is found, the autocatalytic reaction, Eq.~2!, takes place
instantly. The checking and autocatalytic steps are repe
until there are noAB pairs left in the lattice.

~b! In a reactantB desorbtion step, the correspondingB is
removed from a lattice leaving empty siteO.

~c! If the jump step is started, it does not necessarily m
that a reactant will really jump. The energy for initial an
final configuration is calculated according to Eq.~6!. A new
05110
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RN is generated. A reactant jumps to the empty site onl
condition RN,1/@11exp(eb2ea)# is fulfilled.

~6! Loop returns to the step~2! if t is less than a given
simulation time.

IV. SIMULATION RESULTS

The lattice size effect on oscillations amplitude in t
Lotka-type model was analyzed by Maiet al. @5#. They
found that there is a large noise level for small lattices. O
for 102431024 lattices and larger is the noise reduced to
level where oscillations are clearly seen. In our simulatio
we use a square discrete lattice of 102431024 sites with
periodic boundary conditions.

There is certain relaxation time in our simulations, whi
depends on initial concentration and distribution of reacta
B. The requirement for initial conditions is the following
reactantsB should be present in the lattice and their conce
tration should be nonzero after the relaxation time. Reacta
A initially are not required, but they can be added in fr
sites, which do not contain reactantsB as NN. After the
relaxation time simulation results are independent on ini
conditions. The following initial conditions are used: The
are no reactantsA at the beginning and half of the lattice
randomly filled with reactantsB.

From the MC computer simulations for every set of e
ternal parameters~adsorption ratez, jump rateyJ , and inter-
action energyeJJ8! we obtain the time dependence of co
centrations of reactantsA andB. The power spectral densit
~PSD! analysis is performed on concentration of reactantB
as a function of time~see Refs.@9,20# for details!. As a
result, both oscillation frequencyv0 and amplitude at this
frequency are determined for various diffusion regimes.

~i! First, a standard Lotka-type model is analyzed in ter
of the reactantA adsorption ratez. The oscillatory behavior
is found for smallz values, Fig. 1. It arises as an interpla
between the two processes, which to a first approxima
could be considered separately. First, reactantsA are created
in lattice and they form statistically a percolating cluste
Second, at the same time, reactantsB are mainly desorbed

FIG. 1. The amplitude~squares! and frequency~circles! of os-
cillations vs the creation ratez of reactantsA. The dashed line
divides the oscillatory region~upper part! from the nonoscillation
region ~lower part!.
4-3
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G. ZVEJNIEKS AND V. N. KUZOVKOV PHYSICAL REVIEW E63 051104
whereas the percolating cluster ofA extends. At some mo
ment the percolatingA cluster meets one of survived rea
tantsB and thus it is transformed from a cluster ofA’s to a
cluster ofB’s. The cycle then repeats once again, reactanB
desorb and reactantsA form a new percolating cluster.

To distinguish between oscillatory and nonoscillatory b
havior, we postulate that nonoscillatory region occurs, wh
visually one can see no longer oscillations. The correspo
ing PSD amplitude, which separates these two cases
Ampcrit50.007—see dashed line in Fig. 1. The amplitude
the nonoscillatory region~below the dashed line! is approxi-
mately seven times less than the maximal amplitude obta
in the oscillatory region. In addition to the shape of conce
tration oscillations has lost the clear sinusoidal behav
which now is distorted by a large noise level. The PS
method is so sensitive that it can determine an oscilla
frequency and amplitude even in the nonoscillatory regi
since the peak at oscillation frequency is distinguisha
from the background. The critical adsorption rate for a giv
lattice size, which separate oscillatory and nonoscillatory
gions, can be found readily from Fig. 1 to bezcrit50.075.
The PSD amplitude’s excess above Ampcrit observed forz
,zcrit reflects an increase of amplitude of concentration
cillations. Further decrease ofz is accompanied by a catas
trophe in the Lotka-type model: ReactantsA are created so
slowly that all existing reactantsB are desorbed before an
autocatalytic reaction begins to take place. Under these
ditions the system is poisoned by reactantsA.

To extend definition of oscillatory and nonoscillatory r
gions to other lattice sizes one should note, that postula
Ampcrit is used instead of signal-to-noise ratio~SNR!. Since
the noise level in our simulations~lattice size 102431024)
turns out to be a constant, the Ampcrit is proportional to the
critical SNR and we use only the PSD criterium. To rela
this criterium to other lattice sizes it is necessary to introd
the critical SNR, which is independent of lattice size. T
corresponding critical valuezcrit depends on lattice size. Fo
larger latticeszcrit value increases, if we use the SNR crit
rium. Both PSD amplitude and noise level decrease w
respect to the results obtained for smaller lattices, but t
ratio SNR increases, due to very effective noise level red
tion for large lattices. ReactantA poisoning threshold shifts
to smallerz values with an increase of lattice size.

~ii ! Next, we consideredA (B) diffusion without ener-
getic interactions between reactants. In a general cas
nonoscillating reactions, diffusion can lead to a segrega
of reactants@21#. In case of oscillating reactions one of th
important questions is synchronization of local oscillatio
@18,28#. In the Lotka-type model the synchronization of o
cillations is possible even without diffusion of reactan
therefore the role of diffusion is not so obvious.

We have observed that diffusion of reactants decrea
the PSD amplitude of oscillations. In addition, reactantB
diffusion is more effective in suppressing concentration
cillations than that of reactantsA, see Fig. 2. Mobile reac
tantsA form clusters thus screening the inner reactantsA and
preventing them from moving. Only surface reactants c
diffuse, which makes reactantA diffusion less effective in
damping oscillations. The frequency of oscillations in th
05110
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case is only slightly affected by mobileA, due to already
discussed screening effect. In its turn, reactantsB have more
empty neighbor positions due to a randomB desorbtion, Eq.
~3!. This makes reactantB diffusion more effective in the
dumping oscillatory behavior. The frequency of oscillatio
increases with an increase of jump rate, Fig. 2. It reflects
fact, that, e.g., mobile reactantsB find existing clusters of
reactantsA in a shorter time, which determines the high
oscillation frequency. Besides if some reactantB reaches a
cluster ofA quicker, the cluster ofA does not have enoug
time to grow to a percolating size. As a result, we obse
desynchronization of oscillations when the system splits i
autonomously oscillating regions with different phases. T
situation is similar to the case of the standard Lotka-ty
model without diffusion but at large parameterz values,
Fig. 1.

As it was shown, the reactant diffusion modifies the a
plitude of oscillations, which in turn affects the critical ad
sorption ratezcrit dividing oscillatory and nonoscillatory re
gions. The diffusion ofB suppresses the oscillations an
thereby decreases thezcrit value in a larger extent than diffu
sion ofA, Fig. 3, due to already discussed reactantA screen-
ing effect. The dependence of critical adsorption rate on
fusion is nonlinear, e.g., in order to decrease thezcrit by
'20% one needs to increase the jump rateyA from 0 to
1 s21. Further to get the same decrease, one needs to ch
yA from 1 to 3 s21. The reactantA poisoning region below
the dashed lines, see Fig. 3, is defined as follows: The sys
is poisoned at a valuez if the poisoning occurs during the
relaxation time, which for the considered cases is'100 s.
This definition does not include cases when poisoning m
occur at a later time due to statistical fluctuations of react
B concentration. Thus the oscillatory behavior takes place
z values between the lines with solid~open! squares and
solid ~open! circles in case of reactantA(B) diffusion, see
Fig. 3, respectively. Above the lines with squares~solid and
open! the amplitude of oscillations is less than Ampcrit and it
is nonoscillatory region according to our postulate. Belo
the lines with circles~solid and open! the reactantA poison-
ing occurs.

~iii ! Lastly, the energetic interaction of reactants can c

FIG. 2. The amplitude~squares! and frequency~circles! depen-
dences on the jump rateyJ of ~i! reactantsA, J5A ~solid interior!
and ~ii ! reactantsB, J5B ~open interior!. Parameterz50.065.
4-4
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siderably affect the oscillatory behavior. For example, an
traction between reactants promotes the formation of la
clusters. We consider the interaction between reactants
in NN sites, which determines the finite impact of intera
tion. For example, one could chose the interaction ene
very large, but due to a short-range interaction, the effect
be still limited.

Let us now consider several limiting cases ofenergetic
interactions. In a standard model the energetic interaction
reactants is taken into account only through diffusion of
actants, which is governed by three NN interaction energ
eAA , eAB , andeBB . In the limiting case, when one type o
reactants is immobile, e.g., reactantsA, the energetic param
eter eAA plays no role. Thus, we obtain a two-parame
model, where diffusion is governed only byeAB and eBB .
Further, one can study separately the impact of each of th
energetic parameters. In more complex situations when b
energetic parameters are nonzero, usually some interfer
of corresponding limiting cases occurs.

First, let us consider the interaction effects in the case
mobile reactantsB and immobileA. Attractionbetween simi-
lar reactantsB(eBB,0) increases the amplitude of oscilla
tions, see Fig. 4. This leads to a formation of clusters ofB’s,
which reduces the reactivity of a single reactantB. This al-
lows more reactantsA to be accumulated in the system du
ing an oscillation period and results in an increase of am
tude in Fig. 4. Repulsion between reactantsB(eBB.0)
promotes dissolving of clusters ofB’s. It makes every single
reactantB to be even more effective in autocatalysis, Eq.~3!.
The frequency of oscillations decreases/increases slightly
eBB,0 andeBB.0, respectively. This reflects the fact, th
for attracting/repelling reactantsB it takes longer/shorte
time to find a percolating cluster ofA. The variation of am-
plitude with the energetic interaction saturates already
ueBBu.2, due to a short-range interaction nature used in
model.

Second, let us consider now the case of mobile react
B with interaction between dissimilar reactantsA andB. Re-

FIG. 3. The critical adsorption rate dependence on the jump
yJ of ~i! reactantsA, J5A ~solid squares! and ~ii ! reactantsB, J
5B ~open squares!, respectively. The border of the poisoning r
gion is depicted as dashed line with solid~open! circles in the case
of reactantA (B) diffusion.
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pulsion between reactantsA andB, eAB.0, makes it harder
for B to make a jump to an empty position, which has
reactantA in its nearest neighborhood. It promotes formati
of large clusters ofA’s, which is reflected in an increase o
PSD amplitude, Fig. 5. Oscillation frequency decrea
slightly thus indicating that the time needed for a creation
percolating cluster ofA has increased too. Contrary, an a
traction between reactantsA and B, eAB,0, leads to a de-
crease of the PSD amplitude, see Fig. 5. The period of os
lations is slightly decreased, which implies that mobileB
finds quicker clusters ofA. This prevents a creation of larg
clusters ofA’s and thus the PSD amplitude decreases.

The large amplitude dispersion observed in Fig. 5 is d
to the following reasons. To reduce the simulation time,
have assumed that concentration oscillations have
memory effect. Thus, we used a single long simulation r
i.e., we neglected the relaxation time only once. We cons
ered various parts from a simulation as independent sim
tions, in order to get an average of PSD amplitude. T
method works fine in many cases. However, for the case
attraction betweenAB the system obviously has memory e
fects. We choose this method as a compromise between

te

FIG. 4. The amplitude~squares! and frequency~circles! depen-
dences on the dimensionless energetic interactioneBB between
similar reactantsBB. The jump rateyB50.10 s21, z50.065. No
interaction,eAA5eAB50.

FIG. 5. The amplitude~squares! and frequency~circles! depen-
dences on the dimensionless energetic interactioneAB between dis-
similar reactantsAB. The jump rateyB50.10 s21, z50.065. No
interaction between similar reactants,eAA5eBB50.
4-5
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G. ZVEJNIEKS AND V. N. KUZOVKOV PHYSICAL REVIEW E63 051104
accuracy of the results and large simulation time.
Third, we consider now the case when reactantsA are

mobile butB’s do not move. An incorporation of interactio
between reactantsA andB gives results similar to the case o
mobile reactantsB: Repulsion between reactantsA and B
allows accumulation of more reactantsA per period, which
increases the amplitude. Contrary to the mobileB case, the
frequency of oscillations is not changed at all.

Fourth, an interesting case occurs if only reactantsA are
mobile and we consider the energetic interaction only
tweenAA, Fig. 6. Since the Lotka-type model is asymmet
with respect toA andB reactants, this behavior differs from
the case of interacting and mobile reactantsB. Now, if we
consider an attraction between reactantsAA (eAA,0), the
percolating cluster ofA’s is created quicker~the critical con-
centration of reactantsA is less than that in the noninterac
ing case!. This process takes shorter time and, as a result,
amplitude and the period of oscillations decrease~the fre-
quency increases!, as observed from simulations in Fig. 6.
the case of repulsion between reactantsAA, the critical con-
centration of reactantsA should be larger, in order to create
percolating cluster ofA’s. ReactantsA, which sit on the sur-
faces of clusters, repel from reactantsA in their NN posi-
tions. Thus, a loose structure is formed, which can accu
late additional reactantsA. This process is more time
consuming which is well seen from a decrease of the
quency foreAA.0, see Fig. 6.

V. CONCLUSIONS

It is well known that the standard Lotka-type model ha
self-sustained oscillatory behavior@5#. Therefore, we were
able to expand this standard model by an incorporation
diffusion of reactants and to analyze the impact of diffus
on the temporal structures. Since diffusion is a revers
process, which leads the system to equilibrium, we int
duced the energetic~and temperature! dependence into the
model. In Appendix A a detailed description of this proce
dure is given, which however is not unique, unless we int
duce the standard model.

FIG. 6. The amplitude~squares! and frequency~circles! depen-
dences on the dimensionless energetic interactioneAA between
similar reactantsAA. The jump rateyA50.14 s21, z50.065 and
eAB5eBB50.
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Usually diffusion can give rise to the spatiotempor
structures, such as running waves or spirals. In our comp
simulations the spatial structures were not found, becaus
a peculiarity of the Lotka-type model. Namely, an infini
reaction rateA1B→2B determines, that configurations wit
reactantsA and B in the NN sites do not exist. In othe
words, the front of reaction goes with an infinite speed a
all clusters ofA’s are transformed into clusters ofB’s in-
stantly, without any reaction front.

We have observed that diffusion results only in desy
chronization of concentration oscillations. The amplitude
oscillations decreases with an increase of diffusion. Part
larly, diffusion of reactantsA is less effective in destroying
the oscillatory behavior, because reactantsA form clusters
and only a portion of reactants at cluster surfaces can diffu
whereas most of inner reactantsA are screened. In contras
clusters of reactantsB are more loose due to reactantB de-
sorption. Thus, reactantsB turn out to be more mobile, which
results in more pronounced mobility effects.

Lastly, a nontrivial behavior has been observed in the c
of mobile and interacting reactantsA. For example, repulsion
between reactantsAA leads to such a reactant distributio
which accumulates more reactantsA before the percolation
cluster of reactantsA occurs. This results in an increase
the amplitude and decrease of the oscillation frequency.

To understand the impact of diffusion, we used here
simple mathematical model. More detailed models could b
ter reproduce experimentally observed structures. Howe
the understanding of the mechanisms of these phenome
often problematic or even impossible. Therefore, mod
such as the Lotka-type are of great importance, since t
allow one to study and understand individual processes,
diffusion or energetic interaction, independently of oth
factors.
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APPENDIX A: DEFINITIONS OF TRANSITION RATES

The kinetic model is uniquely defined by a set of possi
states of a stochastic system and the transition rates betw
these states. To extend the mathematical model by an in
poration of the energetic interaction between reactants,
has to define the transition rate dependence on the en
and temperature. However, this procedure is not unique.

Let us consider for the illustration an elementary tran
tion of a system from the statea to the stateb. Examples are
~i! process of diffusion, considered as a jump from one
tice site to another;~ii ! adsorption/desorption of a reacta
from a gas phase on a randomly chosen empty lattice site
the first case the system is closed and a number of reac
is preserved~a single mobile reactant!, but the total systems
energy changes after diffusion jump due to different config
rations of surrounding reactants. In the second case, the
4-6
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tem is open. The statea corresponds to an absent reacta
~empty site!, whereas the stateb corresponds to an adsorbe
reactant~occupied site!, which interacts with its neighbor
hood.

Now, let us fix the configuration of reactants and allo
one of the following events: in the case of~i! reactant either
can jump to the NN empty site thus leaving the initial co
figuration, or jump from NN occupied site to empty si
~two-site process!. In the case~ii ! reactant can be adsorbe
desorbed on a single site~one-site process!. The kinetics of
these extremely simplified processes is described by the
netic equation

dW~b!

dt
52

dW~a!

dt

5K~a→b!W~a!2K~b→a!W~b!. ~A1!

Here W(a) and W(b), W(a)1W(b)51, are probabilities
to find the system in the statea and b, K(a→b) and
K(b→a) are transition rates from one state to another,
spectively. As a result of such processes, the local equ
rium should be reached in the limitt→`

Weq~b!5 f ~«,m!, Weq~a!512 f ~«,m!, ~A2!

wherem50 in the case~i! and mÞ0 in the case~ii !. The
function

f ~«,m!5
1

11exp@~«2m!/kBT#
, ~A3!

wherem denotes chemical potential and«5Eb2Ea . Equa-
tion ~A3! might look similar to the Fermi-Dirac distribution
However, this is not a case. The fermionic shape of distri
tion is determined by the following fact: We have consider
one reactant in the two possible states. If one would like
consider the adsorption-desorption of not a monomer b
dimer ~still two possible states, but now for a pair of rea
tants! Eq. ~A3! should be correspondingly modified, see R
@22# for details. The unknown chemical potentialm is usu-
ally determined from the given average number of partic
in a system. Quite different assumption is used in the kin
models: The chemical potential is determined by the co
sponding direct and backward transition rates from an ini
state to a final one, see below for details. The unique de
tion of the transition rates is impossible, because the equ
rium condition of Eq.~A1! gives only the ratio of transition
rates but not the rates themselves:

K~a→b!

K~b→a!
5

Weq~b!

Weq~a!
. ~A4!

In other words, the kinetic model with reactant energe
interaction is not defined uniquely by the analysis of t
limiting case, where one can use the Gibbs statistics.
same equilibrium distribution~if it takes place! could be
reached with different transition rates.

To solve this problem, it was suggested@22# to use a
so-called standard model for describing the chemical re
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tions. We note that ideas of the standard model applied
simpler systems such as the kinetic Ising model, gives
ready known definition of individual transition rates su
gested by Glauber@23# ~see also Refs.@24–27#!.

It is defined in the standard model that

K~a→b!5QWeq~b!, K~b→a!5QWeq~a!, ~A5!

whereQ is a cofactor independent ofa andb, which value
is defined by the procedure described below. This ansatz,
~A5!, fulfils the requirements of Eq.~A4!.

To find the cofactorQ, let us consider the limiting case o
a surface, where there are no other reactants in the neigh
hood of a given reactant. Formally this limit corresponds
the value«50 in Eq. ~A5!. So, in the case of diffusion, the
parameterm50 andf (0,0)51/2, then the right hand sides o
Eq. ~A5! in this limit give Q/2. These relations determine th
jump rate on an empty surface. If we denote it byy0 then we
arrive at the relationQ52y0.

Now we consider the case when the number of reacta
changes. According to our interpretation, in case~ii !, the
limit «50 for the transition rateK(a→b) should give an
adsorption ratep on an empty surfaceQ f(0,m)5p. For the
reverse process~desorbtion from an empty surfacek) we get
Q@12 f (0,m)#5k, correspondingly. As a result, we hav
two equations for two unknown valuesQ andm. This allows
us to determine uniquely the transition rates in the gen
case. We arrive at the relations

Q5p1k,
p

k
5

f ~0,m!

12 f ~0,m!
. ~A6!

The last equations establish an important property of
standard model. Namely, they allow one to define the en
getic dependence for the transition rates.

For example, let us consider the irreversible adsorption
the Lotka-type model: ReactantA could be adsorbed with
pÞ0, but the desorbtion is forbiddenk50. The irreversible
process then is defined as a limiting case, when the trans
ratek tends to zero. It follows from Eq.~A6! that Q5p and
f (0,m)51 ~or m→`). Taking this into account and consid
ering the case«Þ0, we obtain the adsorption rate to follow
p f(«,m)5p for every neighboring configuration of reac
tants. In other words, we have to use a constant transi
rate, which is independent of energetic interactions. The
scribed methodology applied to other irreversible proces
leads to energetically independent transition rates.

In summary, we wish to note, that three irreversible p
cesses in the Lotka-type model are adsorption ofA, desorb-
tion of B, and the reactionA1B→2B. It means that ener-
getic interactions in these processes are trivial by definiti
i.e., transition rates are energetically independent consta
We should take energetic interaction into account in the o
reversible process, namely diffusion.

The standard model defines uniquely the energetic dep
dence of every transition rate. The formulation of the sta
dard model eliminates the ambiguity in the previous defi
tions of mathematical models, when energetic depende
could be freely attributed to some parameters.
4-7
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APPENDIX B: THE BASIS OF THE PAIR ALGORITHM

Below we give the formal foundations of our algorithm.
was already used without detailed description in a serie
papers@18,28–31#, where it was applied to different prob
lems of the surface reaction kinetics. The main advantage
the proposed algorithm are~i! its universality~adding of a
new process does not demand rewriting a whole code! and
~ii ! it is very quick~the code mainly generates random nu
bers and compares these numbers with predefined limit
processes!. We do not consider here the energetic interact
between particles, in order to keep the explanation trans
ent. The corresponding generalization can be easily don

The suggested algorithm ‘‘translates’’ the master eq
tions of the defined class of kinetic lattice models to t
language of MC simulation. We consider the lattice w
equivalent sites~the coordination number isz). The state of
each sitel is determined by a variables l , which can have
different values: 0~empty site!, A ~site occupied by a reac
tant A!, etc. The kinetic model is characterized by a set
elementary events and transition rates. The change o
ementary events determine the change of the state of a w
systems5(s1 ,s2 , . . . ). In thedevelopment of algorithm
we have chosen one important class of lattice mod
namely, we allow for only monomolecular and bimolecu
processes ~the terminology and abbreviation follow
@18,19#!. The bimolecular processes are allowed only for p
ticles in the NN positions. The monomolecular processes
defined as processes, which result in a change of only
site of a lattice. Examples are adsorption (0→A) and des-
orbtion (B→0) of a monomer. The bimolecular process
describe diffusion (A0→0A), (B0→0B) and reaction~an-
nihilation! of the nearest two reactants (AB→00). In this
case the state of two sites changes simultaneously.

1. Master equation

The master equation for the model of a chosen class lo
quite simple:

d

dt
r~s!5

d

dt
r~s!U

in

2
d

dt
r~s!U

out

, ~B1!

where

d

dt
r~s!u in5(

l
(
s l8

P~s l8→s l !r~sl8!

1
1

z (
s l8 ,sm8

(
^ l,m&

Q~s l8sm8 →s lsm!r~slm8 !,

~B2!

d

dt
r~s!uout5(

l
(
s l8

P~s l→s l8!r~sl !

1
1

z (
s l8 ,sm8

(
^ l,m&

Q~s lsm→s l8sm8 !r~slm!.

~B3!
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Here we use the following notations: sl
5(s1 , . . . ,s l , . . . ), sl85(s1 , . . . ,s l8 , . . . ), slm

5(s1 , . . . ,s l ,sm , . . . ), slm8 5(s1 , . . . ,s l8 ,sm8 , . . . ).
The transition rates of monomolecular processes are den
as P(s l→s l8), those for bimolecular processes asQ(s lsm

→s l8sm8 ). The symbol ^ l,m& stands for a summation o
pairs, which are NNs. The cofactor 1/z has been used for th
convenience in the further transformations~see Refs.
@18,31#!.

If transition rates for monomolecular and bimolecul
processes are described using abbreviation

w~lm→l8m8!5
1

z
@Q~lm→l8m8!1P~l→l8!dmm8

1P~m→m8!dll8#, ~B4!

wheredlm stands for Kronecker delta symbol then Eqs.~B2!
and ~B3! obtain a very compact form

d

dt
r~s!u in5 (

^ l,m&
(

s l8 ,sm8
w~s l8sm8 →s lsm!r~slm8 !, ~B5!

d

dt
r~s!uout5 (

^ l,m&
(

s l8 ,sm8
w~s lsm→s l8sm8 !r~slm!.

~B6!

The transition rates introduced in Eq.~B4! describe genera
pseudobimolecular transitions in two NN sites. The tran
tion s lsm→s l8sm8 is considered as both: a real bimolecul
transition ~the state of two sites changes instantly! and
pseudotransition~the state of one of the sites does n
change!. The goal of the transformation is to demonstra
that the kinetics of the given class of problems formally c
be described using only pair pseudoelementary processe

2. Monte Carlo

Formally the MC simulations are equivalent to the pro
lem of random walks in multidimensional spaces ~the state
of a whole system!. For the given class of kinetic problem
in every step only two projections of the vectors can be
changed simultaneously.

The random walks are described by a set of equation

rn11~s!5(
s8

U~s8→s!rn~s8!, ~B7!

which for the kinetic applications should be accompanied
an additional relation, which determines the time

tn115tn1dtn . ~B8!

Herern(s) is the probability to find the system in a states
at thenth microscopical step,tn the corresponding time,dtn
the time increment,U(s8→s) the transition probability
from state (s8) to state (s).

We use the following normalization condition for th
transitions:

(
s8

U~s→s8!51, ~B9!
4-8
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which determines the normalization of probabilitiesrn(s) to

(
s

rn~s!51. ~B10!

For the models of a given class with pseudobimolecular tr
sitions

rn11~s!5 (
^ l,m&

1

M (
s l8sm8

u~s l8sm8 →s lsm!rn~slm8 !

~B11!

the transition probabilities in a random pairu(lm→l8m8)
are normalized to unity

(
l8m8

u~lm→l8m8!51. ~B12!

Equation~B11! has a clear mathematical structure and c
responds to the following MC algorithm.

A pair of NN sites is chosen randomly from a number
pairsM5(z/2)L2 available on a lattice of sizeL @the cofac-
tor 1/M in Eq. ~B11! stands for the probability to choose th
corresponding pair#.

One of the possible events in the pair is chosen rando
„with the help of a random number§P@0,1) according to the
weight u(l8m8→lm)…. As a result, two variables of th
state of sites are changed correspondingly,s l8sm8 →s lsm .

3. The transition scheme from the master equation
to the Monte Carlo

Now we have to establish the relation between the ma
equation and the random walks~and MC!. In other words,
we have to relate the language of the transition rates~and
time! and language of the transition probabilities~and MC
steps!. We use here the differential transition scheme, wh
we exploit the analogy between Eqs.~B1! and~B11! and we
choose the algorithm withdtn5const. Several transition
schemes were suggested in Ref.@15#, where the time stepdtn
is a random variable and its value is determined from
corresponding distribution. The methods described in R
@15# are related to the previously considered algorithm in
same manner as continuous-time random walks~CTRW! in-
troduced by Montroll and Weiss@32# is related to the prob-
lem of random walks. Both approaches are practically id
tical, if the average valuêdtn& in CTRW coincides withdt
in the random walks problem. The CTRW schemes requ
more random numbers. A comparison of these two meth
has reveled that our algorithm is a very economic one.

To connect the formalism of random walks and the mas
equation, let us first construct the differential analog o
derivative from Eq.~B7!

rn11~s!2rn~s!

dtn
5

1

dtn
F(

s8
U~s8→s!rn~s8!

2(
s8

U~s→s8!rn~s!G , ~B13!
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where the normalization condition of Eq.~B9! is used on the
right hand side. The differential equation is obtained us
the correspondences

rn11~s!2rn~s!

dtn
⇒ d

dt
r~s!, rn~s!⇒r~s!,

~B14!

with t instead oftn , andr(s) instead ofrn(s). Secondly,
the time increment can be chosen constantdtn5dt5const
~the method is easily generalized to the problems, where
transition rates depend on time! in the simplest MC algo-
rithm

dt5
zt

M
, ~B15!

where parametert has a dimension of time. Then the mast
equation follows from the system of Eqs.~B11! and~B13!–
~B15! with

d

dt
r~s!u in5 (

^ l,m&
(

s l8 ,sm8

1

zt
u~s l8sm8 →s lsm!r~slm8 !,

~B16!

d

dt
r~s!uout5 (

^ l,m&
(

s l8 ,sm8

1

zt
u~s lsm→s l8sm8 !r~slm!.

~B17!

The main difference lies in the terms of transition probab
ties (1/zt)u(lm→l8m8) of Eqs.~B16! and~B17! instead of
w(lm→l8m8), see Eqs.~B5! and~B6!. The transition rates
w(lm→l8m8) of the master equation as defined consid
only nontrivial transitionslmÞl8m8. In contrary, the tran-
sition probabilitiesu(lm→l8m8) form a complete set due
to the normalization Eq.~B12! and thus contain trivial
~empty! transitions lm5l8m8. Additional terms in Eqs.
~B16! and~B17! mutually vanish, since the trivial transition
does not change a state of a system.

Let us now define

Wlm5z (
l8Þl

(
m8Þm

w~lm→l8m8!. ~B18!

Using Eq.~B4! one arrives at

Wlm5 (
l8m8

Q~lm→l8m8!1(
l8

P~l→l8!

1(
m8

P~m→m8!. ~B19!

If we chooseW05max@Wlm# and definet as t5W0
21 then

transition probabilities read

u~lm→l8m8!5
z

W0
w~lm→l8m8!. ~B20!
4-9
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Since a sum

(
l8Þl

(
m8Þm

u~lm→l8m8!<1 ~B21!

is always restricted, the trivial transitions obtain a uniq
definition as terms, which complement the sum to unity

(
l8

(
m8

u~lm→l8m8![1. ~B22!

Thus, MC simulations become a uniquely defined proble
d
m

ur

.

05110
e
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which coincide with the initial kinetic problem described b
the master equation. These relations could look rather
mal, however, they allow us a very simple and effective
alization in a computer code. We note, that the state of a
of siteslm is denoted in the code by a single number, th
the transition probabilityu(lm→l8m8) can be written as a
two dimensional matrix. The elements of the matrix are p
defined, therefore during MC simulations they are not cal
lated. The efficiency of the code is characterized by the f
that the speed is determined by the random number gen
tor, which is not characteristic for other algorithms.
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