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Monte Carlo simulations for a Lotka-type model with reactant surface diffusion and interactions
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The standard Lotka-type model, which was introduced for the first time byeal. [J. Phys. A30, 4171
(1997] for a simplified description of autocatalytic surface reactions, is generalized here for a case of mobile
and energetically interacting reactants. The mathematical formalism is proposed for determining the depen-
dence of transition rates on the interaction endagyd temperatujefor the general mathematical model, and
the Lotka-type model, in particular. By means of Monte Carlo computer simulations, we have studied the
impact of diffusion(with and without energetic interactions between reactamtscillatory properties of the
A+B— 2B reaction. The diffusion leads to a desynchronization of oscillations and a subsequent decrease of
oscillation amplitude. The energetic interaction between reactants has a dual effect depending on the type of
mobile reactants. In the limiting case of mobile reactdithe repulsion results in a decrease of amplitudes.
However, these amplitudes increase if react@hgse mobile and repulse each other. A simplified interpreta-
tion of the obtained results is given.
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[. INTRODUCTION complicates an analysis of simulation results and thus pre-
vents from the understanding of basic driving mechanisms,
In the last decade along with studies of dissipative struce.g., the origin of synchronization of oscillations.
tures in homogeneous catalytic reactions of the Belousov- To study the very basic properties of catalytic systems,
Zhabotinskii type, considerable attention was attracted to thenathematical models, which are less detailed, are of particu-
heterogeneous catalytic reactions. They reveal a whole spetar importance. One of such models is the Lotka-type model
trum of synergetic effects, e.g., rate oscillations, concentraintroduced for a simplified description of the autocatalytic
tion waves, spirals, and chags]. The heterogeneous sys- surface reactions by Madt al. [5] and further employed in
tems are simpler than the homogeneous ones. Therefore, oRefs. [6—8]. This is a single-parameter model, with two
can use for their study a number of powerful experimentakinds of reactants. It was shown that reactant concentrations
and theoretical methods, which allows one to determine thexhibit here stable oscillations independently of lattice size.
origin of spatiotemporal structures. Self-sustained oscillations of the model allows one to apply
In particular, the oscillatory kinetics was observed in het-standard methods used for a treatment of oscillatory systems.
erogeneous catalysis on many metal surfaces as well as éor example, the resonance properties of the Lotka-type
oxide catalyst§1]. The mechanism of oscillations is differ- model were analyzed recen{l9] by periodically varying in
ent for various catalyst®]. The more so, for the same cata- time the control parameter. Another model which, however,
lyst the origin of oscillations is different in the high and low show unstable oscillations is the Lotka-Volterra model. The
gas pressure limits. However, independently on the type of affects of the spatial constraints on the dynamics of this
catalyst, the global synchronization of oscillations is ob-model was studied recent[j0].
served[1]. This fact implies the existence of very universal  Diffusion of reactants in real catalytic surface reactions is
rules in the behavior of oscillatory systems, which exist in-a very quick and important process, which can lead to a
dependently on both type of catalyst and mechanism of #rmation of aggregates, clusters and spatial structures. This
particular catalytic reaction. is why of particular interest are those mathematical models
One of the theoretical methods used to attack the problerwhich take into account diffusion of reactants. The studies of
of catalysis is a Monte CarlMC) computer simulatiorisee  chemical reaction kinetics with mobile reactants have a long
Refs.[3,4], and references thergints role considerably in- history[4]. The diffusion is implemented usually as random
creased during the last years due to increase of computavalks on the lattice with and without energetic interaction
tional facilities. The idea of the MC method is to define abetween reactants. For example, the coagulation effects
mathematical modelwhich accounts for basic experimen- as diffusion-controlled processes were studied far
tally detected reaction steps. The reactants are assumed to bd8— inert reactions by Silverberg and Ben-Shgld]. The
classical particlesusually denoted aé, B, etc), which can  Ziff-Gulary-Barshad(ZGB) model, which mimics the cata-
occupy sites on a discrete lattice. This allows easily to delytic CO+ 1/20,— CO, reaction, had been also extended for
scribe adsorption, desorption, diffusion, and reaction of reacdiffusion of reactants on a regular surfdd2-14, diffusion
tants as one- or two-site processes with the correspondingn a reconstructing surfa¢é5], and for diffusion and ener-
rates. Both reconstructed and non-reconstructed surfaces cgatic interaction between reactants on a regular suffbgle
be modeled by assigning different sticking coefficients ofChemical reactions with mobile and energetically interacting
reactants to lattice sites. Some models consist of more thaeactants on a reconstructing catalytic surface were studied
ten-step reactions. A detailed mathematical model oftey Zhdanousee Ref[17], and references thergirHowever,
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almost in all papers, which deal with reactant energetic inbe easily generalized by an incorporation of reactant diffu-
teractions, the kinetic model is not defined uniquely. For thesion. Reactanf (B) can jump to its NN site if it is empty:
same system different authors use transition rates of elemen-

tary processede.g., adsorption, desorption, etcwhich A

could have or have not energetiand temperatujedepen- A(adg +0O—O+A(ads, 4)
dence. It makes a comparison of the results practically im- v
possible. The more so, the simulation algorithms are not al- B(ad$ + O—O+B(ads, )

ways adequate to the problem. For example, in simulations

of non-equilibrium processes in the kinetic model the i the jump ratev;, whereJ=A,B. [The diffusion coef-
method of Metropolis was us¢d7]. However, this method ficjentp | is related to a jump rate by the following equation

is defined only for equilibrium systems, where the kinetiCDJ:(llz)ava wherez is a site coordination number amad

aspects of the model are neglected. is a lattice constantThe jump rate for isolated reactant de-
In the present paper, we extend the standard Lotka—typﬁendS only on activation energe; (in the units of KT:

model[5] via introduction of reactant diffusion. This step | _ o_ " exp(—e.yy), Where vy, is a pre-exponential
automatically leads to energetically dependent reaction ra’[eﬁ.mtorJ angijg denote?tr’]e jump rzgfje of noninteracting reac-

In particular, we are interested in determining and under- ts. Lastl take int i tic int i
standing the impact of mobile and interacting reactants ofgnts. Lastly, we take into account an energetic interaction

the temporal structures in the Lotka-type model between reactants. To do it we introduce the energetic char-
The paper is organized in the following way Iﬁ Sec. |l we acteristics of the reactant configuration. If the two reactants

introduce the standard Lotka-type model and generalize it b re in the Ng‘ po§|t|?r|?s, thf" :cnktergcnon dgnergytﬁql:als to
an incorporation of diffusion and energetic interaction of re- ?A1 €gp, an KABB(g‘ AeB“”' s of K7 Iepg_n Ing on the type
actants. The algorithm and details of simulations is describe§! "€aCtantsAA, BB, AB, respectively. Since we are inter-

in Sec. Ill. The simulation results and discussion are Iore_ested in determining the role of energetic interaction on tem-

sented in Sec. IV. Lastly, conclusions are given in Sec VporaI structures it is assumed that temperafuie constant,
e ' <indvhich allows us to consider energy termg, ande,; in-

Taking into account the above-mentioned problems arisin dentlv. The i ) hted di h
from incorporation of diffusion into the mathematical model, déPendently. The jump rate is weighted according to the re-
actant local configuration. The interaction energy at ingjal

we give in Appendt A a detailed description of this proce- ) )
dure. The suggestestandard modetlefines uniquely transi- 2nd finale, reactant state is calculated as

tion rates dependence on the interaction energy for all el-

ementary process rates. The formalism can be applied to

every kinetic lattice model. The relation between the “pair, hare ns (ng) is the number of nearest reactams(B)

algorithm,” which is used in our MC simulations, and the 5:6,nq the considered reactant ang is the number oAB

master equation is given in Appendix B. pairs, respectively. Finally, the jump rate for interacting re-
actants reads

€, 5= €aaNaT EgpNE Tt €AgNAR; (6)

Il. GENERALIZED LOTKA-TYPE MODEL

The Lotka-type model consists of two kinds of reactants v zzvo; 7
. . J J 1 ) ( )
labeled hereafter aA(B), which are situated on a square texpes—e,)
discrete lattice. First, let us remind the definition of the stan- . _ o :
dard Lotka-type model. The following rules are stated for>€€ Appendix A fo_r more details. If energetic interaction
reactants on the lattice: reactahican be adsorbed from a PEtWeen reactants_ls Qeglected, thegr=e,=0 and we ob-
gas phase in an empty sit@ with the adsorption rate, tain from Eq.(7) vy=v;.

Eq. (1):
Ill. SIMULATION ALGORITHM

A(ga3+0—g>A(ad3, (1) Unlike the standard MC, in our computer simulations we

considerpairs of NN lattice sites. That makes a simulation
A(ads +B(ads —2B(ads, (2)  procedure more transparent and its extension to two-site pro-
cesses, such as diffusion, is straightforward. Relation be-
1-¢ tween our simulation algorithm and a corresponding master

B(ad9 — B(gas+O. ®) equation is given in Appendix B. The considered algorithm

has been used earliesee, e.g., Ref$18,19, and references
If reactantA is located in the nearest neighd®N) position  therein. We want to stress here that on the basis of this
to an existing reactar, an autocatalytic reproduction reac- algorithm it was proposed therein to use a very quick method
tion takes place instantly, ER). It is assumed that this step of cellular automaton(CA) instead of usual MC. These
takes no time. This leads to the state where reactantsdB ~ methods coincide if the two conditions are fulfilled: The dif-
never occupy NN positions. Reactdhtan be desorbed with fusion of reactants is very quick, and all transition rates are
the rate (1 ¢), Eqg. (3). It is sufficient to have these reac- finite. Since these conditions are not fulfilled in the Lotka-
tions for obtaining the temporal behavior—oscillations of re-type model, we have to use a standard MC procedure. Our
actant concentration$]. Secondly, the standard model can simulation loop consists of the following steps.
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(1) The time update is determined as follows. All possible ~ 0.050
initial distributionsi of reactantsA (B) in the two lattice
sites are considered. For each such a configuration all pos  0.040
sible independent reactions Eq$)—(5) are summed, which
allows one to determine the transition rateof changing the -8 o030
initial configuration: 2 N
a L
B,B,: desorption ofB,+desorption ofB,, (8 £ *% &
p1=2(1-0), o010
B,0,: desorption ofB;+adsorption inO,+jump of B(lgi) 00 — e o 03

p,=1+2vg, . i
FIG. 1. The amplituddsquares and frequencycircles of os-

cillations vs the creation raté of reactantsA. The dashed line
divides the oscillatory regiofupper part from the nonoscillation
region (lower par}.

A;0,: adsorption inO,+jump of A4, (10

ps={+213,

(11) RN is generated. A reactant jumps to the empty site only if
condition RN<1/[ 1+ expls—e,)] is fulfilled.

pa=2¢, (6) Loop returns to the stef®) if t is less than a given

simulation time.

0,0,: adsorption inO;+ adsorption in O,

A1A,: configuration does not change, (12

IV. SIMULATION RESULTS

ps=0, . . I . .
The lattice size effect on oscillations amplitude in the

where lower indices aX,Y, denote the first and the second Lotka-type model was analyzed by Mai al. [5]. They
site of a pair. The step for an optimal time update is choseffound that there is a large noise level for small lattices. Only
to be proportional to an inverse of the maximal transitionfor 1024x 1024 lattices and larger is the noise reduced to the
ratedt=1/max(;). Time update cannot be chosen larger be-level where oscillations are clearly seen. In our simulations
cause the probabilitieg; are normalized to unity, i.ep;dt ~ we use a square discrete lattice of 182dD24 sites with
<1 for alli. Time update can be chosen smaller, but then th@eriodic boundary conditions.

computer code would not be very effective due to many There is certain relaxation time in our simulations, which

empty loops. depends on initial concentration and distribution of reactants
(2) The simulation time is updateti~t+2dt/L?, where  B. The requirement for initial conditions is the following:
L is the lattice size. reactants8 should be present in the lattice and their concen-

(3) A random number(RN) is generated, in order to tration should be nonzero after the relaxation time. Reactants
choose between horizontal or vertical orientations for a pairA initially are not required, but they can be added in free
(4) Two RNs are generated to chose the coordinates of theites, which do not contain reactarBsas NN. After the
pair. relaxation time simulation results are independent on initial

(5) The state of chosen sites is determined. Depending ooonditions. The following initial conditions are used: There
it, see Eqgs.(8)—(12), one of independent reactions can beare no reactantd at the beginning and half of the lattice is
chosen randomly according to the standard MC simulatiomandomly filled with reactants.
algorithm. For example, in the case of a paifO, [Eq. From the MC computer simulations for every set of ex-
(10)]: First, a RN is generated. Then reacténadsorption ternal parameter@dsorption rat€, jump ratev;, and inter-
step inO, is started if RN< Zdt, else iff{dt<RN<psdt the action energye;;) we obtain the time dependence of con-
jump step ofA, is started. Nothing happens if RNpadt. centrations of reactants andB. The power spectral density

(a) In a reactanf adsorption step, reactaftis created in  (PSD analysis is performed on concentration of reactéts
the corresponding empty site. Then the system is checked fa&s a function of time(see Refs[9,20] for detaily. As a
all AB pairs, which could be in the NN lattice sites. If such aresult, both oscillation frequency, and amplitude at this
pair is found, the autocatalytic reaction, E8), takes place frequency are determined for various diffusion regimes.
instantly. The checking and autocatalytic steps are repeated (i) First, a standard Lotka-type model is analyzed in terms

until there are nAAB pairs left in the lattice. of the reactani adsorption rate. The oscillatory behavior
(b) In a reactanB desorbtion step, the correspondiBgs  is found for small values, Fig. 1. It arises as an interplay
removed from a lattice leaving empty site between the two processes, which to a first approximation

(c) If the jump step is started, it does not necessarily meacould be considered separately. First, reactAndse created
that a reactant will really jump. The energy for initial and in lattice and they form statistically a percolating cluster.
final configuration is calculated according to E6). A new  Second, at the same time, reactaBtare mainly desorbed
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whereas the percolating cluster Afextends. At some mo- 0.42
ment the percolating\ cluster meets one of survived reac-
tantsB and thus it is transformed from a cluster &% to a
cluster ofB’s. The cycle then repeats once again, reactBnts
desorb and reactanfsform a new percolating cluster.

To distinguish between oscillatory and nonoscillatory be-
havior, we postulate that nonoscillatory region occurs, wheng.
visually one can see no longer oscillations. The correspondg
ing PSD amplitude, which separates these two cases, i
Amp;=0.007—see dashed line in Fig. 1. The amplitude in
the nonoscillatory regiofbelow the dashed lines approxi- . . .
mately seven times less than the maximal amplitude obtainet 0.0 0.05 0.10 0.15 0.20
in the oscillatory region. In addition to the shape of concen- -

, RO - ! ; v (s)
tration oscillations has lost the clear sinusoidal behavior, J
which now Is dlstqr_ted by a large noise .Ievel. The_ PS_D FIG. 2. The amplituddsquaresand frequencycircles depen-
method is so sensitive that it can determine an oscillationyences on the jump rate of (i) reactants, J=A (solid interion
frequency and amplitude even in the nonoscillatory regiongng iy reactants, J=B (open interioy. Parametet = 0.065.
since the peak at oscillation frequency is distinguishable
from the background. The critical adsorption rate for a givencase is only slightly affected by mobil&, due to already
lattice size, which separate oscillatory and nonoscillatory rediscussed screening effect. In its turn, react&bsve more
gions, can be found readily from Fig. 1 to l§g;=0.075. empty neighbor positions due to a rand@wlesorbtion, Eq.

The PSD amplitude’s excess above Ammbserved ford (3). This makes reactar® diffusion more effective in the
</ reflects an increase of amplitude of concentration osdumping oscillatory behavior. The frequency of oscillations
cillations. Further decrease ¢fis accompanied by a catas- increases with an increase of jump rate, Fig. 2. It reflects the
trophe in the Lotka-type model: Reactatsare created so fact, that, e.g., mobile reactanBfind existing clusters of
slowly that all existing reactant® are desorbed before any reactantsA in a shorter time, which determines the higher
autocatalytic reaction begins to take place. Under these comscillation frequency. Besides if some react8nteaches a
ditions the system is poisoned by reactafits cluster of A quicker, the cluster oA does not have enough

To extend definition of oscillatory and nonoscillatory re- time to grow to a percolating size. As a result, we observe
gions to other lattice sizes one should note, that postulatedesynchronization of oscillations when the system splits into
Ampy;; is used instead of signal-to-noise rat®NR). Since  autonomously oscillating regions with different phases. This
the noise level in our simulationgattice size 1024 1024)  situation is similar to the case of the standard Lotka-type
turns out to be a constant, the Agpis proportional to the model without diffusion but at large parametérvalues,
critical SNR and we use only the PSD criterium. To relateFig. 1.
this criterium to other lattice sizes it is necessary to introduce As it was shown, the reactant diffusion modifies the am-
the critical SNR, which is independent of lattice size. Theplitude of oscillations, which in turn affects the critical ad-
corresponding critical valué,;; depends on lattice size. For sorption ratef; dividing oscillatory and nonoscillatory re-
larger lattices/;; value increases, if we use the SNR crite- gions. The diffusion ofB suppresses the oscillations and
rium. Both PSD amplitude and noise level decrease witlthereby decreases tlgg;; value in a larger extent than diffu-
respect to the results obtained for smaller lattices, but theigsion of A, Fig. 3, due to already discussed reactascreen-
ratio SNR increases, due to very effective noise level reducing effect. The dependence of critical adsorption rate on dif-
tion for large lattices. Reactark poisoning threshold shifts fusion is nonlinear, e.g., in order to decrease thg by
to smaller{ values with an increase of lattice size. ~20% one needs to increase the jump ratefrom O to

(i) Next, we considered\ (B) diffusion without ener- 1 s 1. Further to get the same decrease, one needs to change
getic interactions between reactants. In a general case of from 1to 3 s The reactanf poisoning region below
nonoscillating reactions, diffusion can lead to a segregatiothe dashed lines, see Fig. 3, is defined as follows: The system
of reactant§21]. In case of oscillating reactions one of the is poisoned at a valug if the poisoning occurs during the
important questions is synchronization of local oscillationsrelaxation time, which for the considered cases=i$00 s
[18,28. In the Lotka-type model the synchronization of os- This definition does not include cases when poisoning may
cillations is possible even without diffusion of reactants,occur at a later time due to statistical fluctuations of reactant
therefore the role of diffusion is not so obvious. B concentration. Thus the oscillatory behavior takes place for

We have observed that diffusion of reactants decreases values between the lines with solidpen squares and
the PSD amplitude of oscillations. In addition, react&t solid (open circles in case of reacta®(B) diffusion, see
diffusion is more effective in suppressing concentration osFig. 3, respectively. Above the lines with squatsslid and
cillations than that of reactants, see Fig. 2. Mobile reac- open the amplitude of oscillations is less than Agppand it
tantsA form clusters thus screening the inner reacténdsid  is nonoscillatory region according to our postulate. Below
preventing them from moving. Only surface reactants canhe lines with circlegsolid and openthe reactanf poison-
diffuse, which makes reactart diffusion less effective in ing occurs.
damping oscillations. The frequency of oscillations in this  (iii) Lastly, the energetic interaction of reactants can con-

0.04

itude

0.03

0.02
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0.025 - TR Tt-sal_,
I S~ Bt S 0.020 |
" : 4036
I 4 2 0 2 4
OO n 1 2 1 n 1 2 1 n 1 2 e
0 1 2 3 4 5 6 BB
v, (3'1) FIG. 4. The amplitudésquaresand frequencycircles depen-

dences on the dimensionless energetic interactipg between

FIG. 3. The critical adsorption rate dependence on the jump ratgimilar reactant8B. The jump ratevs=0.10 s, {=0.065. No
vy of (i) reactantsA, J=A (solid squaresand (ii) reactantsB, J  interaction,esa=exp=0.
=B (open squargsrespectively. The border of the poisoning re-
gion is depicted as dashed line with sol@pen circles in the case Pulsion between reactanésand B, e,g>0, makes it harder
of reactantA (B) diffusion. for B to make a jump to an empty position, which has a

) ) ) reactantA in its nearest neighborhood. It promotes formation
siderably affect the oscillatory behavior. For example, an atyf |arge clusters of\’s, which is reflected in an increase of
traction between reactants promotes the formation of larggpgp amplitude, Fig. 5. Oscillation frequency decreases
clusters. We consider the interaction between reactants onlyfightly thus indicating that the time needed for a creation of
in NN sites, which determines the finite impact of interac-percojating cluster oA has increased too. Contrary, an at-
tion. For example, one could chose the interaction energy,action between reactants and B exs<0, leads to a de-
very I_arge,_ but due to a short-range interaction, the effect will,,a55e of the PSD amplitude, see Fig. 5. The period of oscil-
be still limited. lations is slightly decreased, which implies that motie

~ Let us now consider several limiting casesesfergetic  fings quicker clusters oh. This prevents a creation of large
interactions In a standard model the energetic interaction of | ;sters ofA’s and thus the PSD amplitude decreases.

reactants is taken into account only through diffusion of re- 114 large amplitude dispersion observed in Fig. 5 is due
actants, which is governed by three NN interaction energieg, the following reasons. To reduce the simulation time, we
€ans €as, @ndegg. In the limiting case, when one type of paye assumed that concentration oscillations have no
reactants is immobile, e.g., reactam;sthe_energetlc param- memory effect. Thus, we used a single long simulation run,
eter exa plays no role. Thus, we obtain a two-parameterj e e neglected the relaxation time only once. We consid-
model, where diffusion is governed only IB4g andegs.  ered various parts from a simulation as independent simula-
Further, one can study separately the impact of each of theqpons, in order to get an average of PSD amplitude. This
energetic parameters. In more complex situations when bothhethod works fine in many cases. However, for the case of
energetic parameters are nonzero, usually some interferenggraction betweedB the system obviously has memory ef-

of corresponding limiting cases occurs. , fects. We choose this method as a compromise between the
First, let us consider the interaction effects in the case of

mobile reactant® and immobileA. Attractionbetween simi-

lar reactantB(egg<<0) increases the amplitude of oscilla-
tions, see Fig. 4. This leads to a formation of clusterB'sf
which reduces the reactivity of a single reactBnfThis al-
lows more reactantd to be accumulated in the system dur-
ing an oscillation period and results in an increase of ampli-
tude in Fig. 4. Repulsionbetween reactant8(egg>0)
promotes dissolving of clusters Bfs. It makes every single
reactanB to be even more effective in autocatalysis, B).
The frequency of oscillations decreases/increases slightly fo  g.020
egp<0 andegg>0, respectively. This reflects the fact, that IR
for attracting/repelling reactantB it takes longer/shorter % 4 2 0 2 4 6
time to find a percolating cluster &. The variation of am- e
plitude with the energetic interaction saturates already for

|egg|>2, due to a short-range interaction nature used in our FIG. 5. The amplitudésquaresand frequencycircles depen-

0.44

0.040

0.035

0.40

Amplitude
-1
o, (s)

o
=]
I
A

-10.36

model. dences on the dimensionless energetic interagjgnbetween dis-
Second, let us consider now the case of mobile reactantsmilar reactantsAB. The jump ratevg=0.10 s, {=0.065. No
B with interaction between dissimilar reactat®ndB. Re- interaction between similar reactants,,=egg=0.

051104-5



G. ZVEJINIEKS AND V. N. KUZOVKOV PHYSICAL REVIEW E63 051104

0.44 Usually diffusion can give rise to the spatiotemporal
structures, such as running waves or spirals. In our computer
simulations the spatial structures were not found, because of
a peculiarity of the Lotka-type model. Namely, an infinite

0.040

0.035

§ odo T reaction ratéA + B— 2B determines, that configurations with
£ 0030 e reactantsA and B in the NN sites do not exist. In other
g' g words, the front of reaction goes with an infinite speed and
<C 0,025 all clusters ofA’s are transformed into clusters &'s in-
stantly, without any reaction front.
0.020

0.36 We have observed that diffusion results only in desyn-
chronization of concentration oscillations. The amplitude of
oscillations decreases with an increase of diffusion. Particu-

A larly, diffusion of reactant®\ is less effective in destroying

the oscillatory behavior, because reactafitform clusters
FIG. 6. The amplitudésquaresand frequencycircles depen-  and only a portion of reactants at cluster surfaces can diffuse,
dences on the dimensionless energetic interacﬁ@ﬂ between whereas most of inner reactamfisare screened. |In Contrast,
similar reactants\A. The jump ratev,=0.14 s*, {=0.065 and  ¢|ysters of reactant8 are more loose due to reactadide-

€as=€ss=0. sorption. Thus, reactanBsturn out to be more mobile, which
_ o results in more pronounced mobility effects.
accuracy of the results and large simulation time. Lastly, a nontrivial behavior has been observed in the case

Third, we consider now the case when reactahtare  of mobile and interacting reactams For example, repulsion
mobile butB’s do not move. An incorporation of interaction between reactant8 A leads to such a reactant distribution,
between reactan® andB gives results similar to the case of which accumulates more reactartsbefore the percolation
mobile reactantd: Repulsion between reactardsand B cluster of reactanté occurs. This results in an increase of
allows accumulation of more reactarksper period, which  the amplitude and decrease of the oscillation frequency.
increases the amplitude. Contrary to the molilease, the To understand the impact of diffusion, we used here a
frequency of oscillations is not changed at all. simple mathematical model. More detailed models could bet-

Fourth, an interesting case occurs if only react#tse ter reproduce experimentally observed structures. However,
mobile and we consider the energetic interaction only bethe understanding of the mechanisms of these phenomena is
tweenAA, Fig. 6. Since the Lotka-type model is asymmetric often problematic or even impossible. Therefore, models
with respect toA andB reactants, this behavior differs from such as the Lotka-type are of great importance, since they
the case of interacting and mobile reactaBtsNow, if we  allow one to study and understand individual processes, e.g,
consider an attraction between reactah®s (eas<<0), the  diffusion or energetic interaction, independently of other
percolating cluster of’s is created quickefthe critical con-  factors.
centration of reactant& is less than that in the noninteract-
ing case. This process takes shorter time and, as a result, the
amplitude and the period of oscillations decreéde fre- ACKNOWLEDGMENTS
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faces of clusters, repel from reactamtsin their NN posi-

tions. Thus, a loose structure is formed, which can accumu- .
late additional reactant\. This process is more time APPENDIX A: DEFINITIONS OF TRANSITION RATES

consuming which is well seen from a decrease of the fre- The kinetic model is uniquely defined by a set of possible

quency foreaa>0, see Fig. 6. states of a stochastic system and the transition rates between
these states. To extend the mathematical model by an incor-
V. CONCLUSIONS poration of the energetic interaction between reactants, one

has to define the transition rate dependence on the energy

It is well known that the standard Lotka-type model has aand temperature. However, this procedure is not unique.
self-sustained oscillatory behavips]. Therefore, we were Let us consider for the illustration an elementary transi-
able to expand this standard model by an incorporation ofion of a system from the stateto the stategs. Examples are
diffusion of reactants and to analyze the impact of diffusion(i) process of diffusion, considered as a jump from one lat-
on the temporal structures. Since diffusion is a reversibldice site to another(ii) adsorption/desorption of a reactant
process, which leads the system to equilibrium, we introfrom a gas phase on a randomly chosen empty lattice site. In
duced the energetiand temperatujedependence into the the first case the system is closed and a number of reactants
model. In Appendi A a detailed description of this proce- is preserveda single mobile reactantbut the total systems
dure is given, which however is not unique, unless we intro-energy changes after diffusion jump due to different configu-
duce the standard model. rations of surrounding reactants. In the second case, the sys-
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tem is open. The state corresponds to an absent reactanttions. We note that ideas of the standard model applied for
(empty site, whereas the stat@ corresponds to an adsorbed simpler systems such as the kinetic Ising model, gives al-
reactant(occupied sitg which interacts with its neighbor- ready known definition of individual transition rates sug-
hood. gested by Glaubdgr3] (see also Ref§24-27).

Now, let us fix the configuration of reactants and allow It is defined in the standard model that
one of the following events: in the case @f reactant either
can jump to the NN empty site thus leaving the initial con- K(a—B)=QWB), K(B—a)=QWq«a), (A5)
figuration, or jump from NN occupied site to empty site
(two-site process In the casdii) reactant can be adsorbed/ WhereQ is a cofactor independent of and 3, which value
desorbed on a single sitene-site proce3sThe kinetics of is defined by the procedure described below. This ansatz, Eq.
these extremely simplified processes is described by the kiA5), fulfils the requirements of EqA4).

netic equation To find the cofactoR, let us consider the limiting case of
a surface, where there are no other reactants in the neighbor-
dW(B)  dW(a) hood of a given reactant. Formally this limit corresponds to
dt  dt the valuee =0 in Eg. (A5). So, in the case of diffusion, the

parametef. =0 andf(0,0)=1/2, then the right hand sides of
=K(a—B)W(a)=K(B—a)W(B). (A1)  Eq.(A5) in this limit give Q/2. These relations determine the

Here W(a) andW(B), W(a)+W(B)=1, are probabilities " rate on an empty surface. If we denote itiSythen we

. . arrive at the relatiorQ=21°.
to find the system in the state and g, K(a—p) and Now we consider the case when the number of reactants
K(B— «) are transition rates from one state to another, re-

. ..~changes. According to our interpretation, in cdse the
s_pectlvely. As a result of such processes, the local equ'“bl'imit =0 for the transition rat&(a— 8) should give an
rlum should be reached in the lintit-oc adsorption ratg on an empty surfac®f(0,u)=p. For the
WeY B)=f(e,n), WeHa)=1—f(e,u), (A2) reverse processlesorbtion from an empty surfakg we get
Q[1-f(0O,u)]=k, correspondingly. As a result, we have
where =0 in the casgi) and u#0 in the casgii). The  two equations for two unknown valu€sand . This allows
function us to determine uniquely the transition rates in the general
case. We arrive at the relations
1

fle,m)= 1+exd(e—u)/kgT]’

(A3) £(0
Q=ptk E:% (A6)
whereu denotes chemical potential ase=Ez—E,. Equa- '

tion (A3) might look similar to the Fermi-Dirac distribution. The |ast equations establish an important property of the
However, this is not a case. The fermionic Shape of diStribUstandard model. Name|y, they allow one to define the ener-
tion is determined by the following fact: We have consideredgetic dependence for the transition rates.

one reactant in the two possible states. If one would like to' For example, let us consider the irreversible adsorption in
consider the adsorption-desorption of not a monomer but ge Lotka-type model: Reactarit could be adsorbed with
dimer (still two possible states, but now for a pair of reac-p=0, but the desorbtion is forbidddn=0. The irreversible
tantg Eq. (A3) should be correspondingly modified, see Ref. process then is defined as a limiting case, when the transition
[22] for details. The unknown chemical potentjalis usu-  ratek tends to zero. It follows from E¢A6) thatQ=p and

ally determined from the given average number of particles (g, ,)=1 (or u— ). Taking this into account and consid-

in a system. Quite different assumption is used in the kinetigring the case #0, we obtain the adsorption rate to follow
models: The chemical potential is determined by the corre f(e,u)=p for every neighboring configuration of reac-

state to a final one, see below for details. The unique definirate, which is independent of energetic interactions. The de-

tion of the transition rates is impossible, because the equilibscriped methodology applied to other irreversible processes
rium condition of Eq.(Al) gives only the ratio of transition |eads to energetically independent transition rates.

rates but not the rates themselves: In summary, we wish to note, that three irreversible pro-
a cesses in the Lotka-type model are adsorptiodoflesorb-
Kla—pg) _W*(B) (A4)  tion of B, and the reactiom+B— 2B. It means that ener-

getic interactions in these processes are trivial by definition,
i.e., transition rates are energetically independent constants.
In other words, the kinetic model with reactant energeticWe should take energetic interaction into account in the only
interaction is not defined uniquely by the analysis of thereversible process, namely diffusion.
limiting case, where one can use the Gibbs statistics. The The standard model defines uniquely the energetic depen-
same equilibrium distributior(if it takes place could be dence of every transition rate. The formulation of the stan-
reached with different transition rates. dard model eliminates the ambiguity in the previous defini-
To solve this problem, it was suggestE2P] to use a tions of mathematical models, when energetic dependence
so-called standard model for describing the chemical reaczould be freely attributed to some parameters.

K(B—a) Wea)
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APPENDIX B: THE BASIS OF THE PAIR ALGORITHM Here we use the following notations: o
— I: !

Below we give the formal foundations of our algorithm. It =0y, 0, ) o (,01’ SRR )’, iy

O1s o O, Oy o+ ), ol,=(o1,...,00,00,,...).

was already used without detailed description in a series O1fh
papers[18,28—31, where it was applied to different prob-
lems of the surface reaction kinetics. The main advantages
the proposed algorithm an@) its universality(adding of a

e transition rates of monomolecular processes are denoted
P(o,—a/), those for bimolecular processes @éo| o,

— 0| o},). The symbol{l,m) stands for a summation of
new process does not demand rewriting a whole Lol pairs, which are NNs. The cofactorzliias been used for the

(ii) it is very quick(the code mainly generates random num_cog\%r;lence in the further transformatiorisee Refs.
bers and compares these numbers with predefined limits (g} I,f tra{nsition rates for monomolecular and bimolecular
processes We do not consider here the energetic interactiorProcesses are described using abbreviation
between particles, in order to keep the explanation transpar-
ent. The corresponding generalization can be easily done. 1

The suggested algorithm “translates” the master equa- W(AMH)‘,M,):E[Q(A/LH)\,M,HP()‘HM)%W
tions of the defined class of kinetic lattice models to the Lp Ne B4
language of MC simulation. We consider the lattice with (p=u") o5\ ], (B4)
equivalent sitegthe coordination number ®). The state of wheres, , stands for Kronecker delta symbol then E@&2)
each sitel is determined by a variable,, which can have and(B3) obtain a very compact form
different values: Qempty site, A (site occupied by a reac- q
tant A), etc. The kinetic model is characterized by a set of - o ro /
elementary events and transition rates. The change of el- dtp(a)"” <I,Em 2 W(o{ o= 010m) (i), (BS)
ementary events determine the change of the state of a whole
systemo= (04,05, ...). In thedevelopment of algorithm, d
we have chosen one important class of lattice models: &p(a)lout:<§1> 2 W(0 0= 0 Tp) p(Fin) -
namely, we allow for only monomolecular and bimolecular oo
processes (the terminology and abbreviation follows (B6)
[18,19). The bimolecular processes are allowed only for par-The transition rates introduced in E@®4) describe general
ticles in the NN positions. The monomolecular processes argseudobimolecular transitions in two NN sites. The transi-
defined as processes, which result in a change of only ongon ¢ ¢, — o o, is considered as both: a real bimolecular
site of a lattice. Examples are adsorption{#) and des-  yansition (the state of two sites changes instantnd
orbtion (B—0) of a monomer. The bimolecular processespseydotransitionthe state of one of the sites does not
describe diffusion AO—0A), (BO—0B) and reactionan-  change. The goal of the transformation is to demonstrate
nihilation) of the nearest two reactant&B—00). In this  that the kinetics of the given class of problems formally can

’ ’
g Lo

case the state of two sites changes simultaneously. be described using only pair pseudoelementary processes.
1. Master equation 2. Monte Carlo
The master equation for the model of a chosen class looks Formally the MC simulations are equivalent to the prob-
quite simple: lem of random walks in multidimensional spage(the state
of a whole system For the given class of kinetic problems,
d B d d in every step only two projections of the vectorcan be
giP(@=girl@)| —giplo)| (B1)  changed simultaneously.
n out The random walks are described by a set of equations
where
. pnea(0)=2 U(a’'—0)po(0”), (87)
— in= P(o| 1 ) . ’ - .
atP(@ln E| ; (1= aplor) which for the kinetic applications should be accompanied by
1 ' an additional relation, which determines the time
* z ,2/ (%) Qoiom=1omp(Tin). the1=th+ oty (B8)
a0 ’
; (B2) Herep,(o) is the probability to find the system in a state
at thenth microscopical steft,, the corresponding timejt,,
d the time incrementU (o’ — o) the transition probability
ap(u’)|0ut=z Z P(oy—a|)p(ay) from state @’') to state @).
I We use the following normalization condition for the
1 transitions:
t3 2, (%) Q(aion— (o) p(Tim).
T E U(O’—>O"):1, (Bg)
(B3) o'
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which determines the normalization of probabilitiggo) to  where the normalization condition of E@9) is used on the
right hand side. The differential equation is obtained using

S po(e)=1. (B10) the correspondences
(o
. . . - d
F_o_r the models of a given class with pseudobimolecular tran- %’)”(U)i &p(a'), pn(o)=p(0),
sitions n
(B14)
pns1(0)= i 2 u(o| o= o1om pn(ofm) with t instead oft,, andp(o) instead ofp,(o). Secondly,
dm M ool the time increment can be chosen constéint= 6t=const

(B11) (the method is easily generalized to the problems, where the

N o ) transition rates depend on tiné the simplest MC algo-
the transition probabilities in a random paifA u—A\'u") rithm

are normalized to unity

WE/ UApu—N u')=1. (B12) =1 (B15
M
Equation(B11) has a clear mathematical structure and corWhere parameter has a dimension of time. Then the master
responds to the following MC algorithm. equation follows from the system of Eq&11) and (B13)—
A pair of NN sites is chosen randomly from a number of (B15) with
pairsM = (z/2)L? available on a lattice of size [the cofac-
tor 1M in Eg. (B11) stands for the probability to choose the
corresponding pajr {my g 27
One of the possible events in the pair is chosen randomly Lo (B16)
(with the help of a random number[0,1) according to the
weight u(N"u'—X\uw)). As a result, two variables of the d
state of sites are changed correspondinglyr,— oo, . FiP(@lou= <§) >

d 1
ﬁp(tr)lmzz 2 _U(UIIO'FnHUIO'm)P(UIIm)'

1
Z—TU(0'|0'm—’0'|"Tr'n)P(0'|m)-
I '9m
3. The transition scheme from the master equation (B17)

o the Monte Carlo The main difference lies in the terms of transition probabili-

Now we have to establish the relation between the masteies (1z7r)u(Aw—\'u') of Egs.(B16) and(B17) instead of
equation and the random walkand MQ. In other words, w(Au—\"u'), see Eqs(B5) and(B6). The transition rates
we have to relate the language of the transition rééesl w(Au—X\'u’) of the master equation as defined consider
time) and language of the transition probabilitiénd MC  only nontrivial transitions\ w# X\’ u’. In contrary, the tran-
steps. We use here the differential transition scheme, wheraition probabilitiesu(Au— X\’ x') form a complete set due
we exploit the analogy between E@B1) and(B11) and we to the normalization Eq(B12) and thus contain trivial
choose the algorithm withst,=const. Several transition (empty transitionsAu=\'x’. Additional terms in Egs.
schemes were suggested in R&b], where the time stept, (B16) and(B17) mutually vanish, since the trivial transitions
is a random variable and its value is determined from thaloes not change a state of a system.
corresponding distribution. The methods described in Ref. Let us now define
[15] are related to the previously considered algorithm in the
same manner as continuous-time random w&IKERW) in- _ r o
troduced by Montroll and WeigS82] is related to the prob- W"“_ngx M%ﬂ WAR=AR). (B18)
lem of random walks. Both approaches are practically iden-
tical, if the average valuést,) in CTRW coincides withst ~ Using Eq.(B4) one arrives at
in the random walks problem. The CTRW schemes require

more random numbers. A comparison of these two methods W,,= > QOu—\m')+ > P(A—\")
has reveled that our algorithm is a very economic one. a N NG
To connect the formalism of random walks and the master
equation, let us first construct the differential analog of a +2 P(u— ). (B19)
derivative from Eq.(B7) o
Pn+1(0)—pa(0) _ L{E U(o'—a)py(o) If we chooseWo=maxW,,] and definer as =W, * then
oty oty | 7 transition probabilities read

—2 U(o—0")py(0)

A
, (B13) U =N 1) =W p— ") (B20)
0
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Since a sum

> D up—Npl)s1 (B21)
NFEN p Fu

is always restricted, the trivial transitions obtain a unique

definition as terms, which complement the sum to unity

> 2 u(p—\p)=1. (B22)
N

PHYSICAL REVIEW E63 051104

which coincide with the initial kinetic problem described by
the master equation. These relations could look rather for-
mal, however, they allow us a very simple and effective re-
alization in a computer code. We note, that the state of a pair
of sites\ i is denoted in the code by a single number, thus
the transition probabilityy(A w— X\’ ") can be written as a
two dimensional matrix. The elements of the matrix are pre-
defined, therefore during MC simulations they are not calcu-
lated. The efficiency of the code is characterized by the fact
that the speed is determined by the random number genera-

Thus, MC simulations become a uniquely defined problemtor, which is not characteristic for other algorithms.
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